Impact of hierarchical modular structure on ranking of individual nodes in directed networks
نویسندگان
چکیده
Many systems, ranging from biological and engineering systems to social systems, can be modeled as directed networks, with links representing directed interaction between two nodes. To assess the importance of a node in a directed network, various centrality measures based on different criteria have been proposed. However, calculating the centrality of a node is often difficult because of the overwhelming size of the network or the incomplete information about the network. Thus, developing an approximation method for estimating centrality measures is needed. In this study, we focus on modular networks; many real-world networks are composed of modules, where connection is dense within a module and sparse across different modules. We show that ranking-type centrality measures including the PageRank can be efficiently estimated once the modular structure of a network is extracted. We develop an analytical method to evaluate the centrality of nodes by combining the local property (i.e., indegree and outdegree of nodes) and the global property (i.e., centrality of modules). The proposed method is corroborated with real data. Our results provide a linkage between the ranking-type centrality values of modules and those of individual nodes. They also reveal the hierarchical structure of networks in the sense of subordination (not nestedness) laid out by connectivity among modules of different relative importance. The present study raises a novel motive of identifying modules in networks.
منابع مشابه
Fuzzy Hierarchical Location-Allocation Models for Congested Systems
There exist various service systems that have hierarchical structure. In hierarchical service networks, facilities at different levels provide different types of services. For example, in health care systems, general centers provide low-level services such as primary health care services, while the specialized hospitals provide high-level services. Because of demand congestion in service networ...
متن کاملRegion Directed Diffusion in Sensor Network Using Learning Automata:RDDLA
One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...
متن کاملRegion Directed Diffusion in Sensor Network Using Learning Automata:RDDLA
One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...
متن کاملمعرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملHierarchical Modularity in Human Brain Functional Networks
The idea that complex systems have a hierarchical modular organization originated in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging in 18 healthy v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009